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ABSTRACT

This paper introduces the use of visual attention models and
saliency maps to improve the accuracy of gaze tracking systems.

Firstly, we propose a low-cost gaze tracking system using Arti-
ficial Neural Network (ANN) and a web cam. We propose a new
way to present data to the ANN and compare our system to existing
ANN-based gaze tracking systems and other accurate gaze tracking
systems.

Secondly, we propose to improve the accuracy of gaze tracking
system using a visual attention model. The visual attention model
simulates the human visual system, defining a saliency map for the
image, i.e., giving an attention weight to every pixel of the image.
Our algorithm uses an uncertainty window, defined by the gaze
tracker accuracy, and located around the gaze point given by the
tracker. Then, it searches for the most salient points, or objects, lo-
cated inside this uncertainty window, and determines a novel and,
hopefully, better gaze point. Finally, we present the results of an
experiment conducted to assess the performance of our approach.

The whole system can be used as a real-time gaze tracking sys-
tem in many interactive 3D applications such as video games, vir-
tual reality applications, etc. The use of a visual attention model
can be adapted to any gaze tracker and the visual attention model
can also be adapted to the application in which it is used.

Keywords: gaze-tracking, artificial neural network, visual atten-
tion model, saliency map, human-computer interaction

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities; K.7.m [Information Interfaces and Presentation]:
User Interfaces—Interaction styles, User-centered design

1 INTRODUCTION

Gaze trackers are systems used to compute the gaze position of a
human [8]. A majority of gaze trackers are designed to compute the
gaze position onto a flat screen. Since their creation in the late 19th
century, before the computer existed, these systems have come a
long way [8]. They have become more and more accurate and less
cumbersome. Moreover, the interest in these systems has grown
thanks to their usefulness in several domains: from human stud-
ies in psychology to VR systems, e.g. to accelerate the rendering
process, or as an aid for disabled people.

Many gaze estimation methods have already been proposed.
However, many of them suffer from their complex calibration pro-
cedures, their poor usability, their intrusivity [13], their cost [20] or
their cumbersomeness [3]. These systems are often accurate but,
for the reasons aforementioned, cannot be sold on the mass mar-
ket for daily use. Today, it would be valuable to have a low-cost
eye-tracking system usable without needing a high expertise and
in various conditions. For example, such a system could be enter
onto the mass market of consoles or could be used with a web cam
connected to a PC. They could be valuable in interactive 3D appli-
cations such as video games, virtual reality applications, etc.

A new kind of gaze-trackers has recently emerged: remote gaze-
tracker. Remote gaze tracking systems are qualified as “systems
that operate without contact with the user and permit free head
movement within reasonable limits without losing tracking” [4].
These systems generally use only a camera or web cam at a low

resolution. However, they are generally less accurate than previ-
ous gaze trackers. Therefore, a lot of research is still going on to
improve remote gaze tracking systems.

In this paper, we present a novel way to use visual attention mod-
els in order to improve the accuracy of any gaze tracking system
such as remote gaze trackers. For this aim, we first propose a low-
cost gaze tracking system based on a web cam and an artificial neu-
ral network (ANN). Then, we describe an algorithm to combine
a gaze tracker with a visual attention model in order to improve
the overall accuracy. It uses an uncertainty window, which size is
defined by the accuracy of the gaze tracker, to search for more co-
herent gaze position using a saliency map encoding visually salient
area. It is computed using a visual attention model.

In the remainder of this paper, after exposing related work, we
detail the algorithm and the architecture we propose to compute,
in real time, user’s gaze position using a web cam and an artificial
neural network. The accuracy and usability of this system is dis-
cussed. In a second part, a new way to use visual attention models
is presented to improve the accuracy of the gaze tracker. Finally,
we report on an experiment conducted to evaluate the accuracy of
the proposed method. The paper ends with a general discussion and
conclusion.

2 RELATED WORK

In the last decade many gaze-tracking systems have been developed
for various applications, such as for virtual reality and interactive
3D applications. Table 1 summarizes the existing gaze tracking
systems, putting an emphasis on the required hardware and their
current accuracy.

Intrusive systems are generally restrictive for users who have to
wear heavy and uncomfortable equipment. As an example, Kauf-
man et al. [13] use electrooculography to measure eyes muscular
activity. This method requires the user to wear electrodes on their
head. Knowing this activity, they can evaluate the orientation of the
eyes and compute the gaze position with an accuracy of 1.5 to 2
degrees. Another technique requires the user to wear induction coil
contact lens [8]. The gaze direction can be computed by measuring
the high-frequency electro-magnetic fields produced by these lens.
Both these techniques require user’s head to stay still. To overcome
this problem, Duchowski et al. [7] propose an helmet with an em-
bedded 600× 450 screen for each eye. Two gaze trackers, one for
each eye, are used. The tracker use the corneal reflection of infra-
red light sources to detect the pupil and use its shape to compute
the view direction and the gaze point. Furthermore, this system is
able to compute a 3D gaze point using the vergence phenomenon
of both tracked eyes. Intrusive systems are precise enough to be
interesting for a research purpose, however, it would be better to
have non-intrusive gaze tracking systems. As shown in Table 1,
few gaze tracking systems are intrusive and current trend is toward
the development of non intrusive systems.

Non-intrusive gaze trackers allow users to feel more free because
they do not wear any device and can move their head. For this aim,
Beymers and Flickner [3] propose a multi camera system. The users
head is first tracked using a camera with a wide field of view. The
users face being tracked, a high resolution narrow camera is steered
in the direction of one eye of the user. Finally, a 3D representation
of the eye is used with the infra-red light glint position to evalu-
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Category Reference Hardware Intrusive Horizontal
accuracy
(degree)

Vertical
accuracy
(degree)

Limitations

Intrusive Kaufman et al. [13] electrodes yes 1.5 to 2 1.5 to 2 intrusive
trackers Duchowski et al. [7] helmet with two

screens
yes 0.3 0.3 intrusive and expensive

Trackers
based on

Beymers et al. [3] one wide and one nar-
row steerable camera

no 0.6 0.6 expensive and cumber-
some

specific hard-
ware

Tobii [20] dedicated capture sys-
tem

no 0.5 0.5 expensive

Yoo et al. [24] infra-red LED and
CCD camera

no 1.0 0.8 user must remain between
30 to 40cm to the screen

Remote gaze
trackers

Hennessey et al.
[10]

infra-red LED and
CCD camera

no 1.0 1.0 infra-red light

Guestrin et al. [9] two light and one CCD
camera

no 0.9 0.9 cumbersome (use of two
lights)

Yamazoe et al. [22] CCD camera no 5.0 7.0 low accuracy
ANN-based Baluja et al. [2] 640×480 CCD camera no 1.5 1.5 non robust calibration
gaze trackers Piratla et al. [18] 640×480 webcam yes not avail-

able
not avail-
able

non robust calibration

Attended ob-
jects trackers

Lee et al. [15] no hardware no object
based

object
based

highly dependent on the
VE and user’s task

Table 1: Summary of existing gaze tracking systems.

ate user’s gaze position on screen with an accuracy of 0.6 degrees.
Tobii technology [20] proposes a non-intrusive gaze tracking sys-
tem which allows moderate movement of user’s head. The Tobii
system uses expensive dedicated tracking devices but has an accu-
racy of 0.5 degrees. This system uses infra-red lights. However,
implementation details are not available. Table 1 shows that these
non-intrusive systems are very accurate but require high expertise,
they are cumbersome [3] or very expensive [20].

Recently, a lot of research has been conducted on remote eye-
tracking systems. These systems are designed to be used in every
day life by non-expert users with a simple and fast calibration pro-
cess. Some of the proposed systems [10] [24] still require infra-red
LED but are able to achieve an accuracy of one degree. The calibra-
tion sequence of the system proposed by Hennessey et al. [10] only
requires the user to look at five points. The gaze tracker of Guestrin
and Eizenman [9] only requires two normal light sources and one
CCD camera to compute the gaze position with an accuracy of 0.9
degrees in the best case under free head movement. When only one
light is used, the system still works if the users’ head remains at a
constant position. All the presented remote gaze trackers use a 3D
representation of the eye to compute the gaze direction using re-
flection glint. The system developed by Yamazoe et al. [22] is able
to compute the gaze position without infra-red light nor calibration
sequence. This system is aimed for everyday use since it uses a sin-
gle video camera. It has a low accuracy of 5 degrees horizontally
and 7 degrees vertically. The results found are promising and they
could be improved.

3 ARTIFICIAL NEURAL NETWORK BASED GAZE TRACKER

We propose a low cost ANN-based gaze tracking system using a
single web cam. This system is designed to compute the gaze point
of a user onto a flat screen.

In this section, previous ANN-based gaze trackers are described.
We then expose hardware requirements as well as the software
architecture of our ANN-based gaze tracker (red, green and blue
boxes of the global architecture presented in Figure 1). We detail
the calibration sequence, i.e. how the ANN is trained, and real time
use. Finally we report on a experience conducted to measure the
accuracy of this system.

Improved
Gaze Tracking

Calibration and
Learning

Final gaze point

Processing of
eyes images

Artificial
neural

networks
Gaze

tracking

learnt
behavior

Look-at
target

uncertainty
window

target 
position

image 
the user

is watching

eyes data

saliency map gaze point

Artificial
neural networks

Learning

Visual
Attention

Model

Combination of saliency map
and ANN-based gaze tracking

Figure 1: Global architecture.

3.1 Existing gaze trackers based on Artificial Neural
Network

Few gaze tracking systems based on ANN have been proposed in
the literature. Baluja and Pomerleau [2] proposed to directly send
an image of one eye of the user to an ANN. This image was scaled
to a size of 15× 15. Their system is able to achieve an accuracy
of 1.5 degree. Piralta and Jayasumana [18] used a different ap-
proach. They computed some features describing current user state
using the video stream and vision algorithms such as geometric pat-
tern tracking, color detection, etc. These features were position of
markers, position on eyes center, distance between upper and lower
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eyelid, etc. They represent the input of the ANN.
Both systems only need a 640×480 web cam and represent the

screen as a two dimensional grid. In addition, the gaze tracker pro-
posed by Piralta and Jayasumana [18] is intrusive since it requires
the user to wear a yellow and black stripped bar stick on their head.

3.2 Our approach for ANN-based Gaze Tracking
Compared to previous gaze trackers based on ANN, we propose to
transform the captured images of user’s eyes in an new data format.
Left and right intersection of the bottom and top eyelid of each eye
must be manually selected by the user in the video recorded by the
web cam. We obtain two points per eye we use to extract the image
of each eye. During this procedure, the head is maintained at a
constant position using a chin-rest.

Each time we receive a frame from the web cam, the images of
user’s eyes are extracted from the video stream and scaled to images
of width We and height He. Contrarily to Baluja and Pomerleau [2]
who directly send the picture of the eye to the ANN, we propose to
transform it to reduce the number of input of the ANN. First, we ap-
ply a contrast-limited adaptive histogram equalization filter to both
images, previously transformed from RGB format to intensity for-
mat, in order to maximize their contrast. Then, for each eye image,
pixels of each column and each row are added using Equation 1 to
obtain two arrays Sx (of size We) and Sy (of size He) from each eye
image.

∀i ∈ [1,We],Sx[i] =
He

∑
j=1

eyeImage[i][ j]

∀ j ∈ [1,He],Sy[ j] =
We

∑
i=1

eyeImage[i][ j] (1)

Finally, for each eye, Sx and Sy have their values mapped from
their range [min value,max value] to the range [0,1] and this result
is stored in S′x and S′y arrays. This mapping is important because it
allows us to take advantage of the full working range of each neu-
rone activation function. This function is a linear activation func-
tion which works in the [0,1] range.

The arrays S′x and S′y for each eye are then sent to the ANN.
Actually, we use two ANN per eye : one which computes the hor-
izontal position of the gaze point based on S′x and another one to
compute the vertical position of the gaze point based on S′y. Af-
ter preliminary testing, we found that using the S′x and S′y arrays as
input of separate ANN produces smoother estimations of the gaze
position. We also found that We = 40 pixels and He = 20 pixels
were adapted size for the scaled image of the eyes given the reso-
lution of the web cam and learning capabilities of the ANN. More-
over, each ANN is composed of three layers with twenty neurones
in each hidden layer. Using this architecture, our algorithm is able
to evaluate continuous gaze position on the screen contrary to pre-
vious ANN-based gaze trackers which represent the screen as a 2D
grid [2][18].

3.3 Calibration sequence and gaze tracking
In order to have the system computing user’s gaze position in real
time, we need to calibrate it. During this sequence, each ANN will
be trained to compute one coordinate of the gaze point based on its
associated eye image.

The calibration sequence trains the ANN of the gaze tracking
system to compute the gaze point position based on the arrays S′x
and S′y of each eye. For this aim, the system tells the user to follow
a target which moves onto the whole screen area. The target moves
slowly in order to reduce the latency due to the refresh rate of the
web cam. We consider (xt ,yt) the normalized screen coordinate
of the target ranging from 0, i.e. bottom and left of the screen, to
1, i.e. top and right of the screen. At each frame, we add to the

training set S′x and S′y computed in real time for the left and right
eyes, and the corresponding gaze position (xt ,yt) on screen, i.e. the
target position on screen. Finally, each ANN is trained using the
retro-propagation algorithm.

After the end of the ANN training, the real-time gaze tracking se-
quence is initiated. As explained before, the gaze tracker computes
a gaze position on the screen for each eye. The final gaze position
is computed as the mean of the two resulting gaze positions: this
produces smoother gaze movements.

3.4 Environment and hardware setup
The ANN-based gaze tracker we propose only requires one web
cam supporting 640× 480 video capture. This system is designed
to compute the user’s gaze position on a flat screen.

The user’s head is expected to remain within the range of 40 to
80 cm in front of the screen as illustrated in Figure 2. Furthermore,
the system we propose works better when the height of the user is
at the level of the center of the screen. For a better performance, we
recommend to position the web cam under the screen and not over.
In this case, eyes are more visible as they are not hidden by dense
upper eyelashes. Currently, the system requires the user’s head to
stay at a constant position and orientation.

Screen

Middle point 
of the screen

Web cam

60 cm

60 cm

User

Figure 2: Hardware setup.

3.5 Accuracy
We assessed the accuracy of the ANN gaze tracking system we pro-
pose by conducting an evaluation with 6 naı̈ve participants.

3.5.1 Procedure
Six people participated in this evaluation. During the test, they were
positioned in front of a flat 19′ screen at a resolution of 1280×1024.
They were at a distance of 60 cm from the screen and the web cam,
and no sound was played. We used the ANN gaze tracking system
presented in this paper to compute, in real-time, the participants’
gaze position. Their head and eyes were maintained at a constant
position using a chin-rest.

For each participant, after the calibration sequence, the experi-
ment consisted in successively looking at nine white targets, each
one during 3 seconds. We recorded the participants’ gaze position
on the screen, computed using the ANN gaze tracker together with
the current real target position.

3.5.2 Results and Discussion
To assess the accuracy of the ANN-based gaze tracker, we com-
puted the difference between participants gaze points measured by
the gaze tracker and real targets’ positions on the screen. These
differences were the distances between the gaze points and targets
on the horizontal and vertical axes. Then, using these errors to-
gether with users’ distance from the screen and screen size, we can
compute the average accuracy in degrees. During this sequence, we
do not take into account the first 100 milliseconds after each target
switch in order to ignore errors due to saccades.
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Participants Horizontal
accuracy
in degree

Vertical
accuracy
in degree

1 0.777 1.048
2 1.684 1.449
3 1.300 1.050
4 1.780 0.872
5 1.814 1.452
6 1.499 0.937
Mean 1.476 1.135
Standard
Deviation

0.392 0.254

Table 2: Horizontal and vertical accuracy of the ANN-based gaze
tracker.

The global mean accuracy, as well as the accuracy for each par-
ticipant, of our system are shown in Table 2. We found that the
ANN gaze tracking system has a mean accuracy of 1.48◦ on the
horizontal axis and 1.14◦ on the vertical axis. This accuracy is
highly dependent on the user’s eyes shape. For small and almost
closed eyes, the accuracy can decrease to 1.81◦ whereas for users
with wide open eyes, it can increase to 0.78◦.

Our system requires a comfortable amount of ambient light to
have enough contrast in the captured images of the user’s eyes.
Moreover, it requires the user’s head to be maintained at a con-
stant position although previous ANN gaze trackers support head
movements [2] [18]. However, the calibration sequence of these
systems are highly dependent of users which were forced to move
their head. We could improve our system by taking into account the
eyes position in the video and yaw, pitch and roll angles of the head
similarly to [18].

The accuracy of our ANN-based gaze tracking system seems
sufficient for the user to achieve various tasks in several environ-
ments such as operating systems desktop or 3D virtual environ-
ments. However, this system could be improved by taking advan-
tage of the characteristics of the human visual system. This is ad-
dressed in the following section and it is considered as the main
contribution of our approach.

4 USING VISUAL ATTENTION MODELS TO IMPROVE GAZE
TRACKING

We propose to improve the accuracy of gaze tracking systems by
using a visual attention model.

In this section, we describe the human visual system and previ-
ous work on visual attention models. Then, we detail an algorithm
using a visual attention model and a saliency map to improve the
accuracy of any gaze tracker. Finally we report on a experience
conducted to measure the advantages of using this method.

4.1 Visual attention models
Visual attention represents the capacity of a human to focalize on
a visual object of a scene. The brain does not have the capacity
to analyze a whole scene in one time. Thus, it uses some viewing
strategies to quickly analyze a scene [12] [11]. It is well known that
visual attention is composed of two components: bottom-up and
top-down.

The bottom-up component simulates visual reflexes of the hu-
man visual system. Due to the structure of our brain and the fact
that we only accurately perceive our environment on 2 degrees of
our visual field [1], the human visual system does not have the capa-
bilities of analyzing a whole scene in parallel. Instead, it analyzes a
scene sequentially, i.e. area by area. As an example, when someone
first looks at a scene, his/her gaze is first unconsciously attracted by
visually salient areas to rapidly perceive the most important area of

that scene [12]. Several visually salient features have been iden-
tified in previous research [21] [12]: red/green and blue/yellow
antagonistic colors, intensities, orientations, etc. Inspired by the
feature integration theory [21], bottom-up visual attention models
have been developed to compute a saliency map from an image [12]
(for details on how to compute a saliency map, refer to section 4.3).
When a human looks at a picture without any task to do, the saliency
value of each pixel of the saliency map represents its attractiveness,
i.e. the more the saliency of an area is high the more a human will
look at this area. Other features have progressively been added in
the computation of saliency maps such as flickering [11], depth [15]
or motion [15].

Visual attention is not only controlled by reflexes resulting from
visual stimuli, but also by the cognitive process that takes place
in the brain, i.e. the top-down component. It is involved in the
strategies we use to analyze a scene. For example, Yarbus [23] has
shown that the way people look at pictures strongly depends on the
task they have to achieve. Moreover, The top-down component is
subject to the habituation phenomenon [16], i.e. objects become
familiar over time, and oblivion [17]. Several models have been
proposed to simulate the top-down component using task-map [5],
habituation [16], memory [17] or spatial context [15].

Nowadays, visual attention models are used in various domains
for several tasks. For example, they are used to accelerate the com-
putation of global illumination of virtual environments [5] [16], for
dynamic avatar animation [6], smart mesh decimation [14], etc.

4.2 General approach
The main idea of our approach consists in looking for salient (i.e.,
most important) pixels/objects located near the point given by the
gaze tracker and consider that the user is probably looking at these
pixels/objects. The whole approach thus consists in considering
two phases: (1) a global phase in which we compute the point given
by the (ANN-based) gaze tracker corresponding to the raw estima-
tion of the gaze point; and (2) a second phase in which we refine
this gaze point by searching for the most salient point that is closest
to it, corresponding to the precise/final estimation of the gaze point.

Therefore, the method we propose to improve gaze tracking sys-
tems exploits characteristics of the bottom-up component of the
human visual system. The global architecture of our algorithm is
shown on Figure 1. The method is based on a saliency map com-
puted using a bottom-up visual attention model. Our algorithm is
then composed of two parts. In the first part we compute the gaze
point from the ANN-based tracker together with the saliency map
of the current image the user is looking at. In the second part, we
use this saliency map in order to refine the accuracy of the gaze
tracking system.

4.3 Computing the saliency map
To compute the saliency map, we use the bottom-up visual atten-
tion model presented on Figure 3. It is inspired by Itti et al. [12],
however, to reduce the computation time, it is implemented on GPU
hardware using shaders.

Firstly, from the 3D virtual environment image rendered from
the current point of view, we compute four feature maps. Orig-
inally, Itti et al. [12] also used four feature maps: red/green and
blue/yellow antagonistic colors, intensities and orientations. In this
model, antagonistic colors were computed using simple color dif-
ferences. Lee et al. [15] improved this computation by using with
the Hue value of the Hue-Luminance-Saturation color space. In
our case, we propose to use the Lab color space which takes into
account the human visual system [19]. In this color space, rela-
tive differences between colors are “almost perceptually correct”.
Moreover, this color space has the advantage of directly encoding
red/green and blue/yellow antagonistic colors as well as intensity,
i.e. respectively the a, b and L components. They correspond to
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Virtual environment view

Fl FeFa Fb

Cl CeCa Cb

Normalized saliency map

RGB to Lab color space Edge filter

Feature maps pyramids generation

Center-surround differences

Linear combination of conspicuity maps
and normalization of the saliency map

Computing
feature
maps
pyramids

Computing
conspicuity
maps

Figure 3: Algorithm used to compute the saliency map.

Fa, Fb and Fl feature maps on Figure 3. In Itti et al. [12], another
feature map was computed based on orientations in the image using
a Gabor filter. This filter is expensive to compute so we propose to
use an edge filter as in Longhurst et al. [16]. It results in the fea-
ture map Fe. These feature maps are directly computed in real-time
on the GPU using a shader and stored in a single four-component
texture. Finally, feature maps pyramids, containing the original fea-
ture maps and several down sampled copies at lower resolution, are
generated using the automatic mipmap generation capacity of GPU
as proposed by Lee et al.[15].

Secondly, the feature maps need to be converted in conspicuity
maps using the multiscale Center-Surround difference operator as
in [12]. This operator aims at simulating the response of brain neu-
rones which receive stimuli from the visual receptive fields. Orig-
inally, it needs a dyadic Gaussian pyramid of feature map [12]. In
our case, we use the same approach as Lee et al. [15] which con-
sists in using the mipmap pyramid to reduce computation time. The
conspicuity maps, i.e. Cl , Ca, Cb and Ce on Figure 3 , are finally
computed using Equation 2 with i and i + j being mipmap pyra-
mid levels. The level i is a fine level and i + j a coarse level of the
pyramid.

∀x ∈ {l,a,b,e} ,Cx =
1
6

2

∑
i=0

4

∑
j=3

∣∣∣F i
x −F i+ j

x

∣∣∣ (2)

Finally, the normalized saliency map is computed by a linear
combination of the four conspicuity maps as in Lee et al.[15] using
Equation 3. In our case, we use wl = wa = wb = 1.0 and we = 0.8
due to the fact that edge conspicuity map values are often higher
than others conspicuity map values. In the end, the saliency map is
normalized using operator N .

S = N

(
∑

x∈{l,a,b,e}
wx ×Cx

)
(3)

To normalize the saliency map, we need to know the maximum
value in the saliency map. We do not iteratively search for the max-
imum value in the entire saliency map using the CPU because it
would be expensive to compute. Instead, we compute the maxi-
mum by recursively downsampling the saliency map by a factor of
two until we reach the size of one texel which finally contains the
maximum value. In this algorithm, at each step, and for each pixel
of the coarser level, a fragment program computes the maximum
value of the saliency map’s four corresponding pixels of the finer
level computed at the preceding step. Once we have obtained the
maximum value, we normalize the saliency map in a final rendering
pass on the GPU.

As a result, using our algorithm, the saliency map is computed
in real-time using GPU hardware. It takes 22 ms for our algorithm
to compute a 512×512 normalized saliency map. To sum up with,
our algorithm combines advantages of Itti et al. [12], Longhurst et
al. [16], i.e. orientation approximation by an edge filter, and Lee
et al. [15], i.e. fast center-surround operator, bottom-up visual at-
tention models. In addition, we have proposed to use the Lab color
space to compute a more perceptually correct saliency map. We
have also accelerated the normalization process of the saliency map
by using a pyramid algorithm taking advantage of GPU hardware.

4.4 Final computation of the gaze position using a
saliency map

We know the accuracy of the gaze tracking system and the distance
of the user from the screen. Thus, we can compute the accuracy
of the gaze tracking system in screen coordinates. We define the
accuracy Accx on the x axis and Accy on the y axis in screen coor-
dinates. From these values, we can define an uncertainty window
Wu. The size of Wu are Wux = ws × 2.0×Accx on the x axis and
Wuy = ws × 2.0×Accy on the y axis, with ws being a scale factor.
Assuming that the user is gazing inside Wu, we propose to improve
the gaze tracker accuracy by searching inside Wu for potentially
more coherent, i.e. salient, gaze points.

Itti [11] have investigated the contribution of bottom-up saliency
on human eye movements. He found that a majority of saccades
were directed to a minority of highly salient area. His experiment
showed that 72.3% of participants’ gaze were directed at locations
having s > 0.25, with s the maximum saliency of the normalized
saliency map inside a disk of 5.6 degrees of diameter centered on
the gaze point. As a result, he suggested that bottom-up saliency
may provide a set of saccade locations and that the final gaze point
is chosen according to a top-down process. In our case, we know
in which area of the screen the user is gazing thanks to the gaze
point estimated by the gaze tracker we described in Section 3. Thus,
inversly to Itti [11], we propose to search in Wu for highly attractive,
salient, position.

Based on Itti’s work [11] our algorithm takes into account a
saliency threshold St . It computes the novel gaze point position
using the saliency map values close to the gaze position given by
the gaze tracker. It first searches inside the uncertainty window for
the most salient position sp in the normalized saliency map. If the
saliency value of sp is superior to the threshold St , we set the final
gaze point on sp. In the contrary, if it is inferior to St , we rely upon
the gaze tracking system: the gaze point remains unchanged.

Following Itti’s work [11], a good threshold value would be
0.25 [11]. This value can be adapted according to the application
for which the tracker is used. For example, a St of 0 will always set
the gaze point position on the most salient pixel inside Wu. In the
experiment we present in section 5, we expose results for several
threshold values and uncertainty window sizes.

In our model, we could have included a duration of fixation but
Itti [11] has shown that it is not correlated to saliency values at the
level of the gaze point. Moreover, to our best knowledge, no other
research works have found a correlation between a saliency map
and gaze duration. Instead, to avoid instantaneous jump between
the point extimated by the gaze tracker alone and the gaze tracker
improved by the saliency map, we apply a low pass filter to the final
gaze position.

The use of this algorithm is illustrated on Figure 4. In this case,
the gaze point estimated by the ANN-based gaze tracker is far from
the one estimated by the Tobii. However, when the ANN-based
gaze tracker is combined with a saliency map using our method,
the final gaze point position is inside the Tobii zone. The Tobii
zone is a window centered on the gaze point computed by the Tobii
gaze tracker. The size of this zone is defined by both the accuracy
of the Tobii system (0.5◦ [20]) and the distance of the user from the
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Figure 4: Combination of low-cost gaze tracking and saliency map
to improve performance. Top: view of the scene, bottom: the corre-
sponding saliency map. In yellow, gaze point and uncertainty window
of the Tobii system (used as theoretical gaze information). In green,
gaze point and uncertainty window of the low-cost gaze tracker. In
red, the gaze point computed by combining low-cost gaze tracker and
saliency map.

screen (60 cm).

5 EVALUATION

We conducted an experiment to measure to which extent our algo-
rithm can improve gaze tracking system during free navigation in
3D virtual environment. We recorded participants’ gaze positions
using three different approaches : (1) the ANN-based gaze tracker,
(2) the ANN-based gaze tracker improved by the bottom-up visual
attention model and (3) a Tobii gaze tracker which is used to convey
the “theoretical” gaze position of the user.

5.1 Apparatus
During this experiment, we used the ANN gaze tracker described in
section3 and the tobii x50 gaze tracker [20]. The ANN gaze tracker
was used with our algorithm to improve its accuracy as described
in Section 4. We tested the performance of our algorithm under
different conditions, i.e., with different values of saliency threshold
St and scale factor of the uncertainty window ws.

Participants were positioned in front of a flat 19′ screen at a res-
olution of 1280×1024. They were at a distance of 60 cm from the
screen and the web cam, and no sound was played. Their head and
eyes were maintained at a constant position using a chin-rest. The
virtual environment was rendered in real-time at a constant frame-
rate of 50Hz. It represented the interior of a house as shown in
Figure 5.

5.2 Procedure
For each participant, the task consisted in visiting the 3D virtual
environment freely. They navigated using a first-person navigation
paradigm using a keyboard to control the advance direction on the
horizontal plane or climb stairs, and the mouse to look around.

5 participants (4 males, 1 female) with a mean age of 26
(SD=3.2) participated in our experiment. They were all familiar
with first-person navigation paradigm and had normal vision.

Figure 5: 3D virtual environment used for the experiment.

The experiment was divided in two parts. The first part consisted
in the calibration of the Tobii and the ANN-based gaze tracking sys-
tem. The training sequence of the ANN lasted 30 seconds. Then,
the second part of the experiment began. During this part, partici-
pants were free to navigate in the 3D virtual environment dunring 1
minute.

During each session, positions and movements in the virtual en-
vironment and gaze positions were recorded as well as position and
orientation of dynamic objects . Thus, we were able to replay and
analyze each session.

5.3 Results

ANN alone ANN+saliency (St=0) ANN+saliency (St=0.25) ANN+saliency (St=0.5)
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Figure 6: Time spent inside the Tobii window in different gaze-
tracking conditions (using a window scale factor of 2).

During the experiment, we recorded participants’ gaze posi-
tion using the accurate Tobii x50 gaze tracking system. We also
recorded the gaze position computed by the ANN-based gaze track-
ing system alone. Then, in a post processing step, we applied
our method designed to improve gaze tracking by replaying the
recorded sequences of each participant. Thus, we were able to
test several parameters of our method. These parameters were the
uncertainty window scale factor ws with values {1,1.5,2,2.5,3,4}
and the saliency threshold St with values {0,0.25,0.5}.
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ANN alone ANN+saliency (St=0) ANN+saliency (St=0.25) ANN+saliency (St=0.5)
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Figure 7: Time spent looking at the same virtual object as detected
with the Tobii system in different gaze-tracking conditions (using a
window scale factor of 2).

Window size
(scale factor)

p value for % of
time in Tobii zone

p value for % of
time on same object

1.0 0.336 0.050
1.5 0.133 0.014*
2.0 0.005* 0.013*
2.5 0.110 0.026*
3.0 0.084 0.066
4.0 0.925 0.0501

Table 3: P value of non-parametric ANOVA conducted on perfor-
mance indicators.

The dependent variables were: ZONE the percentage of time the
gaze point computed by the gaze tracking system is inside the Tobii
zone, and OBJECT the percentage of time this gaze point is on the
same virtual object as the Tobii system. A non-parametric ANOVA
(kruskal-wallis) was conducted in order to measure the effect of St
for several values of ws.

The ANOVA found a significant main effect for St on the de-
pendent variable ZONE when ws = 2.0 (see Table 3). As shown on
Figure 6 When our method is used, the percentage of time spent
inside the Tobii zone is increased from 6.45% (standard devia-
tion (SD)=4.11), in the case when the ANN-based gaze tracker is
used alone, to 13% (SD=1.18) for St = 0.0, 12.87% (SD=0.96) for
St = 0.25 and 11.18% (SD=1.41) for St = 0.5.

The ANOVA found a significant main effect for St on the depen-
dent variable OBJECT when ws = 1.5, ws = 2.0 and ws = 2.5 (see
Table 3). For the single ANN-based gaze tracker, the percentage of
time spent the percentage of time spent on the same object as the
Tobii gaze point is 49.3% (SD=10.6%) as shown on Figure 7. In the
most significant case, when ws = 2.0, the time spent on the same
object as the Tobii gaze point is increased to 70.52% (SD=5.85) for
St = 0.0, 70.04% (SD=6.44) for St = 0.25 and 66.69% (SD=7.52)
for St = 0.5.

5.4 Discussion
In this study, we defined two measures to assess the validity of using
a saliency map computed from a bottom-up visual attention model
to improve gaze tracking. OBJECT

Firstly, we compared the time spent by the gaze points com-
puted with several methods inside the Tobii zone. We found that the
time was significantly increased for the gaze point computed by the

ANN alone ANN with
saliency map
(St = 0.0,
Ws = 2)

Saliency
map alone

% of time in
Tobii zone

6.45 12.98 3.17

% of time on
same object

49.29 70.52 36.91

Table 4: Summary of the results. Best performance of our approach
as compared to: the use of (1) ANN-based gaze tracker alone and
(2) saliency map alone (i.e., using the whole image on screen).

ANN-based gaze tracker improved by our method as compared to
the ANN-based gaze tracker alone. The fact that the improvement
is only significant for ws = 2.0 suggests that smaller uncertainty
windows were not large enough to overlap the Tobii zone. Also,
the fact that scale factors higher than 2.0 did not improve results
indicates that large uncertainty windows contain too many salient
areas that are competing for the final gaze point position. In this
case, the area the user is gazing at may be a high salient area but
not the higher. We can illustrate this by computing the result of a
gaze tracker that always takes the higher salient area on the screen
as the final gaze position. In this case, the gaze points were inside
the Tobii zone only 3.17% of the global time (Table 4). Moreover,
as visible on Figure 6, the use of a saliency threshold does not seem
to have a significant effect on the time spent in the Tobii zone. It
seems that using a high saliency threshold degrade performance.
This correlates Itti [11] results which show that users do not con-
stantly look at the highest salient area.

Secondly, we found significantly better results concerning the
time spent on the same object as the gaze point estimated by the
Tobii eye tracker by the ANN-based eye tracker when it is com-
bined with our method. In this case, three window scale factors
present a significant improvement of our method over the single
ANN-based gaze tracker. The fact that three window factors in-
crease performance, compared to one for the percentage of time
spent in the Tobii zone, can be explained by the fact that objects
users are looking at are large on the screen, i.e. cover a wide area,
since users tend to be close to objects they are looking at. More-
over, as visible on Figure 7, the use of a saliency threshold does
not seem to have an significant effect on the time spent in the tobii
zone. Even high saliency thresholds seem to degrade performance.
This can be explained by the fact the object the user is looking at
may not always contain the highest saliency value of the saliency
map. This suggests that to improve the performance of our method,
a top-down visual attention model could be used to modulate image
space saliency by object-based interest values as proposed by Lee
et al. [15].

Our results suggest that the straightforward method we propose
could significantly increase gaze trackers performance, especially
in the case of object-based interaction as shown in Table 4.

6 EXAMPLES OF APPLICATION

Our novel gaze-tracking approach has been implemented in several
applications and for various purposes. We present two examples of
interaction in 3D VE with gaze. These examples can be used during
a navigation in the VE.

Firstly, user can light his environment by orienting a torchlight
in the direction he is gazing at. The torch light can be simulated
using a spot light. Another way to light the environment would be
to position a point light near the surface the user is gazing at, as
shown in Figure 8.

Secondly, user can move the dynamic objects of the VE by sim-
ply looking at them. As an example, while gazing at an object, the
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User's gaze point

Figure 8: Use of gaze point to light the virtual environment.

User's gaze point

Figure 9: Use of gaze point to move dynamic objects closer to the
user’s avatar.

user can bring it closer to him/her by just pressing a key as shown
on Figure 9. Users can also push the object away.

7 CONCLUSION

We have introduced the use of visual attention models and saliency
maps to improve the accuracy of gaze tracking systems in interac-
tive 3D applications.

We have first proposed a low-cost gaze tracking system based on
artificial neural networks and using a single web cam. This system
was found experimentally to achieve real-time gaze tracking with
an average vertical accuracy of 1.14◦ and an average horizontal ac-
curacy of 1.48◦.

Then we have proposed an algorithm which is meant to improve
the accuracy of any gaze tracking system such as the ANN-based
system described previously. It uses an uncertainty window, defined
by the gaze tracker accuracy, and located around the gaze point
given by the tracker. Then, the visual attention model searches for
the most salient points, or objects, located inside this uncertainty
window, and determines a novel and, hopefully, better gaze point.
Finally, we have presented the results of an experiment conducted
to compare the performance of our approach during a first person
navigation in a 3D virtual environment. Taken together, our results
show a positive influence of our algorithm, i.e. of using visual atten-
tion models, on gaze-tracking performance. We have briefly given
some examples of 3D interactive applications of our final algorithm
within a first-person navigation in a virtual environment.

Our approach could be used as a real-time low-cost gaze tracking
system in many applications such as for video games or virtual real-
ity. Furthermore, the algorithm can be adapted to any gaze tracking
system and the visual attention model can also be extended and
adapted to the application in which it is used.

Future work could first concern the improvement of our algo-
rithm by adding a top-down visual attention model. Second, we
would also like to conduct more evaluations with higher-level tasks
and in other contexts. Last, we would like to investigate novel in-
teraction techniques based on our gaze-tracking system.
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